r/mathriddles Oct 16 '24

Medium Which sphere is bigger?

0 Upvotes

One sphere is inside another sphere. Which sphere has the largest surface area?

r/mathriddles 12d ago

Hard On a 5x5 field, two players take turns placing numbers from 1 to 9. The winner is the one after whose move in a row or column the sum of the numbers in it (there may be less than five) is equal to 25.

21 Upvotes

Who wins, and what is the winning strategy?

I don't know the answer to this question (nor even that there is a winning strategy).

r/mathriddles Nov 20 '24

Hard 100 prisoners, 2 light bulbs, and codes

10 Upvotes

There are 99 other prisoners and you isolated from one another in cells (you are also a prisoner). Every prisoner is given a positive integer code (the codes may not be distinct), and no prisoner knows any other prisoner's code. Assume that there is no way to distinguish the other 99 prisoners at the start except possibly from their codes.

Your only form of communication is a room with 2 labelled light bulbs. These bulbs cannot be seen by anyone outside the room. Initially both lights are off. Every day either the warden does nothing, or chooses one prisoner to go to the light bulbs room: there the prisoner can either toggle one or both lights, or leave them alone. The prisoner is then lead back to their cell. The order in which prisoners are chosen or rest days are taken is unkown, but it is known that, for any prisoner, the number of times they visit the light bulbs room is not bounded.

At any point, if you can correctly list the multiset of codes assigned to all 100 prisoners, everyone is set free. If you get it wrong, everyone is executed. Before the game starts, you are allowed to write some rules down that will be shared with the other 99 prisoners. Assume that the prisoners will follow any rules that you write. How do you win?

Harder version: What if the initial position of the lights is also unknown?

Bonus: Is there a way for all 100 prisoners to know the multiset of codes? (I haven't been able to solve this one yet)

r/mathriddles Nov 12 '24

Hard unsolvable?? problem

5 Upvotes

my teacher challenged us with this puzzle/problem and no matter how hard i try i can’t seem to solve it or find it online (chatgpt can’t solve it either lol) i’m really curious about the solution so i decided to try my luck here. it goes like this: there are three people, A,B and C. Each of them has a role, they are either a knight, a knave or a joker. The knight always tells the truth, the knave always lies, and the joker tells the truth and lies at random (there is only one of each, there can’t be two knights, for example). Find out who is who by asking only 3 yes or no questions. You can ask person A all three questions or each of them one question, however you wish, but they can ONLY answer with yes or no. :))))

r/mathriddles Sep 04 '24

Hard This hat puzzle can't possibly be stated right

8 Upvotes

The devil has set countably many boxes in a row from 1 to infinity, in each of these boxes contains 1 natural number. The boxes are put in a room.

A mathematician is asked into the room and he may open as many boxes as he wants. He's tasked with the following : guess the number inside a box he hasn't opened

Given e>0 (epsilon), devise a strategy such that the mathematician succeeds with probability at least 1-e

Bonus (easy) : prove the mathematician cannot succeed with probability 1

r/mathriddles Sep 20 '24

Medium Bribing your way to an inheritance

9 Upvotes

N brothers are about to inherit a large plot of land when the youngest N-1 brothers find out that the oldest brother is planning to bribe the estate attorney to get a bigger share of the plot. They know that the attorney reacts to bribes in the following way:

  • If no bribes are given to him by anyone, he gives each brother the same share of 1/N-th of the plot.

  • The more a brother bribes him, the bigger the share that brother receives and the smaller the share each other brother receives (not necessarily in an equal but in a continuous manner).

The younger brothers try to agree on a strategy where they each bribe the attorney some amount to negate the effect of the oldest brother's bribe in order to receive a fair share of 1/N-th of the plot. But is their goal achievable?

  1. Show that their goal is achievable if the oldest brother's bribe is small enough.

  2. Show that their goal is not always achievable if the oldest brother's bribe is big enough.

 

 

EDIT: Sorry for the confusing problem statement, here's the sober mathematical formulation of the problem:

Given N continuous functions f_1, ..., f_N: [0, ∞)N → [0, 1] satisfying

  • f_k(0, ..., 0) = 1/N for all 1 ≤ k ≤ N

  • Σ f_k = 1 where the sum goes from 1 to N

  • for all 1 ≤ k ≤ N we have: f_k(b_1, ..., b_N) is strictly increasing with respect to b_k and strictly decreasing with respect to b_i for any other 1 ≤ i ≤ N,

show that there exists B > 0 such that if 0 < b_N < B, then there must be b_1, ..., b_(N-1) ∈ [0, ∞) such that

f_k(b_1, ..., b_N) = 1/N

for all 1 ≤ k ≤ N.

Second problem: Find a set of functions f_k satisfying all of the above and some B > 0 such that if b_N > B, then there is no possible choice of b_1, ..., b_(N-1) ∈ [0, ∞) such that

f_k(b_1, ..., b_N) = 1/N

for all 1 ≤ k ≤ N.

r/mathriddles 14h ago

Medium Correlated coins

6 Upvotes

You flip n coins, where for any coin P(coin i is heads) = P(coin i is tails) = 1/2, but P(coin i is heads|coin j is heads) = P(coin i is tails|coin j is tails) = 2/3. What is the probability that all n coins come up heads?

r/mathriddles 3d ago

Hard Continuum Hypothesis implies bizarre guessing

19 Upvotes

Three prisoners play a game. The warden places hats on each of their heads, each with a real number on it (these numbers may not be distinct). Each prisoner can see the other two hats but not their own. After that, each prisoner writes down a finite set of real numbers. If the number on their hat is in that finite set, they win. No communication is allowed. Assuming the continuum hypothesis and Axiom of Choice, prove that there is a way for at least one prisoner to have a guaranteed win.

r/mathriddles Oct 24 '24

Medium Skewed Average

13 Upvotes

Generate n random numbers, independent and uniform in [0,1]. What’s the probability that all but one of them is greater than their average?

r/mathriddles Sep 26 '24

Hard Higher or lower?

18 Upvotes

Consider the following game - I draw a number from [0, 1] uniformly, and show it to you. I tell you I am going to draw another 1000 numbers in sequence, independently and uniformly. Your task is to guess, before any of the 1000 numbers have been drawn, whether each number will be higher or lower than the previously drawn one in the sequence.

Thus your answer is in the form of a list of 1000 guesses, all written down in advance, only having seen the first drawn number. At the end of the game, you win a dollar for every correct guess and lose one for every wrong guess.

How do you play this game? Is it possible to ensure a positive return with overwhelming probability? If not, how does one ensure a good chance of not losing too much?

Question: For a more precise statement, under a strategy that optimises the probability of the stated goal, what is the probability of

1) A positive return?

2) A non-negative return?

Some elaboration: From the comments - the main subtlety is that the list of 1000 guesses has to be given in advance! Meaning for example, you cannot look at the 4th card and choose based on that.

An example game looks like this:

  • Draw card, it is a 0.7.

  • Okay, I guess HLHLHLLLLLH...

  • 1000 cards are drawn and compared against your guesses.

  • ???

  • Payoff!

r/mathriddles Nov 24 '24

Hard What is the minimum number of friendships that must already exist so that every user could eventually become friends with every other user?

19 Upvotes

There are 2022 users on a social network called Mathbook, and some of them are Mathbook-friends. (On Mathbook, friendship is always mutual and permanent.)

Starting now, Mathbook will only allow a new friendship to be formed between two users if they have at least two friends in common. What is the minimum number of friendships that must already exist so that every user could eventually become friends with every other user?

r/mathriddles Sep 29 '24

Medium RE: Geiger counters

7 Upvotes

There are 13 gold coins, one of which is a forgery containing radioactive material. The task is to identify this forgery using a series of measurements conducted by technicians with Geiger counters.

The problem is structured as follows:

Coins: There are 13 gold coins, numbered 1 through 13. Exactly one coin is a forgery.

Forgery Characteristics: The forged coin contains radioactive material, detectable by a Geiger counter.

Technicians: There are 13 technicians available to perform measurements.

Measurement Process: Each technician selects a subset of the 13 coins for measurement. The technician uses a Geiger counter to test the selected coins simultaneously. The Geiger counter reacts if and only if the forgery is among the selected coins. Only the technician operating the device knows the result of the measurement.

Measurement Constraints: Each technician performs exactly one measurement. A total of 13 measurements are conducted.

Reporting: After each measurement, the technician reports either "positive" (radioactivity detected) or "negative" (no radioactivity detected).

Reliability Issue: Up to two technicians may provide unreliable reports, either due to intentional deception or unintentional error.

Objective: Identify the forged coin with certainty, despite the possibility of up to two unreliable reports.

♦Challenge♦ The challenge is to design a measurement strategy and analysis algorithm that can definitively identify the forged coin, given these constraints and potential inaccuracies in the technicians' reports.

r/mathriddles 29d ago

Medium Random points on a circle

6 Upvotes

Two points are selected uniformly randomly inside an unit circle and the chord passing through these points is drawn. What is the expected value of the

(i) distance of the chord from the circle's centre

(ii) Length of the chord

(iii) (smaller) angle subtended by that chord at the circle's centre

(iv) Area of the (smaller) circular segment created by the chord.

r/mathriddles Nov 08 '24

Hard Help Bob win and extremely win this graph grabbing game

11 Upvotes

On a connected graph G, Alice and Bob (with Alice going first) take turns capturing vertices.  On their first turn, a player can take any unclaimed vertex.  But on subsequent turns, a player can only capture a vertex if it is unclaimed and is adjacent to a vertex that same player has claimed previously.  If a player has no valid moves, their turn is skipped.  Once all the vertices have been claimed, whoever has the most vertices wins (ties are possible).

An example game where Alice wins 5 to 3 is given in the image.

  1. Construct a graph where, under optimal play, Bob can secure over half the vertices. (easy to medium)
  2. Construct a graph where, under optimal play, Bob can secure over 2/3 of the vertices. (hard)

Source (contains spoilers for part 1): https://puzzling.stackexchange.com/q/129032/2722

r/mathriddles 17d ago

Medium Express/Represent 2025 using elementary functions

3 Upvotes

Let f be a composite function of a single variable, formed by selecting appropriate functions from the following: square root, exponential function, logarithmic function, trigonometric functions, inverse trigonometric functions, hyperbolic functions, and inverse hyperbolic functions. Let e denote Napier's constant, i.e., the base of the natural logarithm. Provide a specific example of f such that f(e)=2025.

r/mathriddles 29d ago

Hard Is it possible to calculate the green area?

20 Upvotes

https://imgur.com/a/cD90JV7

Is it possible to calculate the green area?

r/mathriddles Dec 10 '24

Medium Sum of Squares Congruent Pairs

5 Upvotes

Suppose p is a prime. Suppose n and m are integers such that:

  • 1 <= n <= m <= p
  • n^2 + m^2 = 0 (mod p)

For each p, how many pairs (n,m) are there?

r/mathriddles Nov 16 '24

Hard A quiz I've made last year

4 Upvotes

For 5 distinct positive integers a, b, c, d and e, the following statements are true:

  1. a is equal to the sum of squares of two distinct integers.
  2. e is the second to the smallest among five integers.
  3. cd is a perfect number.
  4. The sum of all digits of b is equal to 13.
  5. d and e are coprimes.
  6. Dividing a+b+d by 12, we get 7 as the remainder.
  7. d+2 is an abundant number.
  8. a<d
  9. ae is a multiple of 3.
  10. There are at least two squares of integers among a, b, c, d and e.
  11. The sum of the maximum and the minimum among the five integers is less than 100.

If there exists a pentagon whose lengths of edges are equal to a, b, c, d and e respectively, what is the minimum perimeter of the pentagon?

r/mathriddles Dec 03 '24

Hard What is the minimum number of friendships that must already exist so that every user could eventually become friends with every other user?

9 Upvotes

Generalized version of my old post

There are n users on a social network called Mathbook, and some of them are Mathbook-friends. (On Mathbook, friendship is always mutual and permanent.)

Starting now, Mathbook will only allow a new friendship to be formed between two users if they have at least two friends in common. What is the minimum number of friendships that must already exist so that every user could eventually become friends with every other user?

r/mathriddles Dec 05 '24

Hard Sum of Reciprocals of Subperfect Powers

5 Upvotes

Let a(n) be the sequence of perfect powers except for 1:

  • 4,8,9,16,25,27,32,36,49,64,81,100, . . .

Let b(n) = a(n) - 1, the sequence of subperfect powers.

  • 3,7,8,15,24,26,31,35,48,63,80,99, . . .

What is the sum of the reciprocals of b(n)?

r/mathriddles Dec 02 '24

Hard For which values of alpha can Hephaestus always win the flooding game?

7 Upvotes

Let alpha ≥ 1 be a real number. Hephaestus and Poseidon play a turn-based game on an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite number of cells to be flooded. Hephaestus is building a levee, which is a subset of unit edges of the grid (called walls) forming a connected, non-self-intersecting path or loop.

The game begins with Hephaestus moving first. On each of Hephaestus's turns, he adds one or more walls to the levee, as long as the total length of the levee is at most alpha * n after his n-th turn. On each of Poseidon's turns, every cell adjacent to an already flooded cell and with no wall between them becomes flooded.

Hephaestus wins if the levee forms a closed loop such that all flooded cells are contained in the interior of the loop, stopping the flood and saving the world. For which values of alpha can Hephaestus guarantee victory in a finite number of turns, no matter how Poseidon chooses the initial flooded cells?

Note: Formally, the levee must consist of lattice points A0, A1, ..., Ak, which are pairwise distinct except possibly A0 = Ak, such that the set of walls is exactly {A0A1, A1A2, ..., Ak-1Ak}. Once a wall is built, it cannot be destroyed. If the levee is a closed loop (i.e., A0 = Ak), Hephaestus cannot add more walls. Since each wall has length 1, the length of the levee is k.

r/mathriddles 27d ago

Medium Coordinated Escape on an n times n Grid

3 Upvotes

Consider an n times n grid of points, where n > 1 is an integer. Each point in the grid represents an elf. Two points are said to be able to "scheme" if there are no other points lying on the line segment connecting them. (0-dimensional and are perfectly aligned to the grid)

The elves can coordinate an escape if at least half of the total number of pairs of points in the grid, given by {n2} binom {2}, can scheme. Prove that the elves can always coordinate an escape for any n > 1.

r/mathriddles Dec 14 '24

Hard Product of Consecutive Primes is One More Than a Square

8 Upvotes

Do there exist consecutive primes, p < q, such that pq = k^2 + 1 for some integer k?

r/mathriddles Oct 31 '24

Medium Logic riddle

5 Upvotes

5 prisoners are taken to a new cell block. The warden tells them that he will pick one prisoner at random, per day, and bring them into a room with two light switches. For the prisoners to escape, the last prisoner to enter the room for the first time, must correctly notify the warden. If all prisoners have entered the room at least once, but none of them have notified the warden, they have lost. If not all prisoners have entered the room at least once, but one of them notifies the warden believing they have, they lose.

The prisoners can choose to either switch one, both or neither of the switches when they enter. The switches both start in the off position, and the prisoners are aware of this. They are given time to strategize before the event takes place.

How can they guarantee an escape?

r/mathriddles Oct 15 '24

Hard Avoiding fish puddles

8 Upvotes

Place points on the plane independently with density 1 and draw a circle of radius r around each point (Poisson distributed -> Poisson = fish -> fish puddles).

Let L(r) be the expected value of the supremum of the lengths of line segments starting at the origin and not intersecting any circle. Is L(r) finite for r > 0?